Properties

Label 2.7_157.24t22.4c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 7 \cdot 157 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1099= 7 \cdot 157 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} + 4 x^{5} + 4 x^{4} - 9 x^{3} + 2 x^{2} - 3 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.7_157.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 12 + \left(24 a + 14\right)\cdot 29 + \left(12 a + 12\right)\cdot 29^{2} + \left(20 a + 27\right)\cdot 29^{3} + \left(2 a + 25\right)\cdot 29^{4} + \left(18 a + 3\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 26 + \left(8 a + 24\right)\cdot 29 + \left(8 a + 28\right)\cdot 29^{2} + \left(13 a + 18\right)\cdot 29^{3} + \left(13 a + 16\right)\cdot 29^{4} + \left(20 a + 24\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 20 + \left(a + 9\right)\cdot 29 + \left(24 a + 16\right)\cdot 29^{2} + \left(22 a + 27\right)\cdot 29^{3} + \left(17 a + 2\right)\cdot 29^{4} + \left(26 a + 1\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 16 + \left(4 a + 27\right)\cdot 29 + \left(16 a + 22\right)\cdot 29^{2} + 8 a\cdot 29^{3} + \left(26 a + 19\right)\cdot 29^{4} + \left(10 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 27 + 19\cdot 29 + 10\cdot 29^{2} + 26\cdot 29^{3} + 22\cdot 29^{4} + 25\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 12 + \left(20 a + 4\right)\cdot 29 + \left(20 a + 4\right)\cdot 29^{2} + \left(15 a + 19\right)\cdot 29^{3} + \left(15 a + 12\right)\cdot 29^{4} + \left(8 a + 26\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 23 + \left(27 a + 28\right)\cdot 29 + \left(4 a + 18\right)\cdot 29^{2} + \left(6 a + 1\right)\cdot 29^{3} + \left(11 a + 11\right)\cdot 29^{4} + 2 a\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 10 + 15\cdot 29 + 29^{2} + 23\cdot 29^{3} + 4\cdot 29^{4} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,7,3)(2,5,6,8)$
$(1,7)(2,8)(5,6)$
$(1,5,2)(6,7,8)$
$(1,5,7,8)(2,3,6,4)$
$(1,7)(2,6)(3,4)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,6)(3,4)(5,8)$$-2$
$12$$2$$(1,7)(2,8)(5,6)$$0$
$8$$3$$(1,4,8)(3,5,7)$$-1$
$6$$4$$(1,4,7,3)(2,5,6,8)$$0$
$8$$6$$(1,7)(2,5,3,6,8,4)$$1$
$6$$8$$(1,8,3,6,7,5,4,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,5,3,2,7,8,4,6)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.