Properties

Label 2.7_11_19.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 11 \cdot 19 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1463= 7 \cdot 11 \cdot 19 $
Artin number field: Splitting field of $f= x^{8} + 36 x^{6} + 286 x^{4} + 779 x^{2} + 361 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7_11_19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 9 + 11\cdot 61 + 39\cdot 61^{2} + 57\cdot 61^{3} + 51\cdot 61^{4} + 30\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 20 + 34\cdot 61^{2} + 57\cdot 61^{3} + 27\cdot 61^{4} + 56\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 24 + 19\cdot 61 + 53\cdot 61^{2} + 33\cdot 61^{3} + 25\cdot 61^{4} + 18\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 52\cdot 61 + 12\cdot 61^{2} + 27\cdot 61^{3} + 59\cdot 61^{4} + 16\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 35 + 8\cdot 61 + 48\cdot 61^{2} + 33\cdot 61^{3} + 61^{4} + 44\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 37 + 41\cdot 61 + 7\cdot 61^{2} + 27\cdot 61^{3} + 35\cdot 61^{4} + 42\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 41 + 60\cdot 61 + 26\cdot 61^{2} + 3\cdot 61^{3} + 33\cdot 61^{4} + 4\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 52 + 49\cdot 61 + 21\cdot 61^{2} + 3\cdot 61^{3} + 9\cdot 61^{4} + 30\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,8)(5,7)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,6,5)(2,3,4,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.