Properties

Label 2.7_113.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 7 \cdot 113 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$791= 7 \cdot 113 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 12 x^{6} - 22 x^{5} - 17 x^{4} + 66 x^{3} + 620 x^{2} - 656 x + 704 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.7_113.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 277 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 79\cdot 277 + 249\cdot 277^{2} + 165\cdot 277^{3} + 264\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 64 + 185\cdot 277 + 23\cdot 277^{2} + 15\cdot 277^{3} + 79\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 104 + 156\cdot 277 + 266\cdot 277^{2} + 2\cdot 277^{3} + 214\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 127 + 14\cdot 277 + 236\cdot 277^{2} + 147\cdot 277^{3} + 248\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 151 + 262\cdot 277 + 40\cdot 277^{2} + 129\cdot 277^{3} + 28\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 174 + 120\cdot 277 + 10\cdot 277^{2} + 274\cdot 277^{3} + 62\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 214 + 91\cdot 277 + 253\cdot 277^{2} + 261\cdot 277^{3} + 197\cdot 277^{4} +O\left(277^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 261 + 197\cdot 277 + 27\cdot 277^{2} + 111\cdot 277^{3} + 12\cdot 277^{4} +O\left(277^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,4)(5,6)$$-2$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,7,6)(2,3,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.