Properties

Label 2.7_109.8t12.1c2
Dimension 2
Group $\SL(2,3)$
Conductor $ 7 \cdot 109 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$763= 7 \cdot 109 $
Artin number field: Splitting field of $f= x^{8} - 19 x^{6} + 79 x^{4} - 98 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.7_109.3t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{3} + 2 x + 18 $
Roots:
$r_{ 1 }$ $=$ $ 18 a^{2} + 9 a + 19 + \left(10 a^{2} + 18 a + 1\right)\cdot 23 + \left(2 a^{2} + 21 a + 20\right)\cdot 23^{2} + \left(12 a^{2} + 4 a + 21\right)\cdot 23^{3} + \left(4 a^{2} + 4 a + 7\right)\cdot 23^{4} + \left(17 a^{2} + 15 a + 12\right)\cdot 23^{5} + \left(21 a^{2} + 14 a + 9\right)\cdot 23^{6} + \left(17 a^{2} + 5 a + 4\right)\cdot 23^{7} + \left(14 a^{2} + 6 a + 10\right)\cdot 23^{8} + \left(5 a^{2} + 17 a + 11\right)\cdot 23^{9} + \left(9 a^{2} + 2 a + 18\right)\cdot 23^{10} + \left(10 a^{2} + 2 a + 15\right)\cdot 23^{11} + \left(19 a^{2} + 15 a + 13\right)\cdot 23^{12} + \left(10 a^{2} + 10 a + 1\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 8 + 12\cdot 23 + 17\cdot 23^{2} + 9\cdot 23^{3} + 4\cdot 23^{4} + 7\cdot 23^{6} + 22\cdot 23^{7} + 6\cdot 23^{8} + 16\cdot 23^{9} + 23^{10} + 7\cdot 23^{11} + 14\cdot 23^{12} + 14\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 3 a^{2} + 10 a + 22 + \left(13 a^{2} + 22 a + 4\right)\cdot 23 + \left(18 a^{2} + 14 a + 3\right)\cdot 23^{2} + \left(16 a^{2} + 10 a + 5\right)\cdot 23^{3} + \left(4 a^{2} + 8\right)\cdot 23^{4} + \left(18 a^{2} + 4 a + 21\right)\cdot 23^{5} + \left(22 a^{2} + 22 a + 10\right)\cdot 23^{6} + \left(18 a^{2} + 5 a + 13\right)\cdot 23^{7} + \left(4 a^{2} + 20 a + 4\right)\cdot 23^{8} + \left(9 a^{2} + 9 a + 16\right)\cdot 23^{9} + \left(13 a^{2} + 11 a + 8\right)\cdot 23^{10} + \left(22 a^{2} + 11 a + 1\right)\cdot 23^{11} + \left(12 a^{2} + 2 a + 5\right)\cdot 23^{12} + \left(17 a^{2} + 12 a + 18\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 2 a^{2} + 4 a + 13 + \left(22 a^{2} + 5 a + 1\right)\cdot 23 + \left(a^{2} + 9 a + 4\right)\cdot 23^{2} + \left(17 a^{2} + 7 a + 13\right)\cdot 23^{3} + \left(13 a^{2} + 18 a + 12\right)\cdot 23^{4} + \left(10 a^{2} + 3 a + 3\right)\cdot 23^{5} + \left(a^{2} + 9 a + 13\right)\cdot 23^{6} + \left(9 a^{2} + 11 a + 15\right)\cdot 23^{7} + \left(3 a^{2} + 19 a + 2\right)\cdot 23^{8} + \left(8 a^{2} + 18 a + 7\right)\cdot 23^{9} + \left(8 a + 14\right)\cdot 23^{10} + \left(13 a^{2} + 9 a + 11\right)\cdot 23^{11} + \left(13 a^{2} + 5 a + 13\right)\cdot 23^{12} + \left(17 a^{2} + 10\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + 14 a + 4 + \left(12 a^{2} + 4 a + 21\right)\cdot 23 + \left(20 a^{2} + a + 2\right)\cdot 23^{2} + \left(10 a^{2} + 18 a + 1\right)\cdot 23^{3} + \left(18 a^{2} + 18 a + 15\right)\cdot 23^{4} + \left(5 a^{2} + 7 a + 10\right)\cdot 23^{5} + \left(a^{2} + 8 a + 13\right)\cdot 23^{6} + \left(5 a^{2} + 17 a + 18\right)\cdot 23^{7} + \left(8 a^{2} + 16 a + 12\right)\cdot 23^{8} + \left(17 a^{2} + 5 a + 11\right)\cdot 23^{9} + \left(13 a^{2} + 20 a + 4\right)\cdot 23^{10} + \left(12 a^{2} + 20 a + 7\right)\cdot 23^{11} + \left(3 a^{2} + 7 a + 9\right)\cdot 23^{12} + \left(12 a^{2} + 12 a + 21\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 15 + 10\cdot 23 + 5\cdot 23^{2} + 13\cdot 23^{3} + 18\cdot 23^{4} + 22\cdot 23^{5} + 15\cdot 23^{6} + 16\cdot 23^{8} + 6\cdot 23^{9} + 21\cdot 23^{10} + 15\cdot 23^{11} + 8\cdot 23^{12} + 8\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 20 a^{2} + 13 a + 1 + \left(9 a^{2} + 18\right)\cdot 23 + \left(4 a^{2} + 8 a + 19\right)\cdot 23^{2} + \left(6 a^{2} + 12 a + 17\right)\cdot 23^{3} + \left(18 a^{2} + 22 a + 14\right)\cdot 23^{4} + \left(4 a^{2} + 18 a + 1\right)\cdot 23^{5} + 12\cdot 23^{6} + \left(4 a^{2} + 17 a + 9\right)\cdot 23^{7} + \left(18 a^{2} + 2 a + 18\right)\cdot 23^{8} + \left(13 a^{2} + 13 a + 6\right)\cdot 23^{9} + \left(9 a^{2} + 11 a + 14\right)\cdot 23^{10} + \left(11 a + 21\right)\cdot 23^{11} + \left(10 a^{2} + 20 a + 17\right)\cdot 23^{12} + \left(5 a^{2} + 10 a + 4\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 21 a^{2} + 19 a + 10 + \left(17 a + 21\right)\cdot 23 + \left(21 a^{2} + 13 a + 18\right)\cdot 23^{2} + \left(5 a^{2} + 15 a + 9\right)\cdot 23^{3} + \left(9 a^{2} + 4 a + 10\right)\cdot 23^{4} + \left(12 a^{2} + 19 a + 19\right)\cdot 23^{5} + \left(21 a^{2} + 13 a + 9\right)\cdot 23^{6} + \left(13 a^{2} + 11 a + 7\right)\cdot 23^{7} + \left(19 a^{2} + 3 a + 20\right)\cdot 23^{8} + \left(14 a^{2} + 4 a + 15\right)\cdot 23^{9} + \left(22 a^{2} + 14 a + 8\right)\cdot 23^{10} + \left(9 a^{2} + 13 a + 11\right)\cdot 23^{11} + \left(9 a^{2} + 17 a + 9\right)\cdot 23^{12} + \left(5 a^{2} + 22 a + 12\right)\cdot 23^{13} +O\left(23^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,5,4)(2,7,6,3)$
$(1,2,8)(4,5,6)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,7,5,3)(2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(2,7,4)(3,8,6)$$\zeta_{3} + 1$
$4$$3$$(2,4,7)(3,6,8)$$-\zeta_{3}$
$6$$4$$(1,8,5,4)(2,7,6,3)$$0$
$4$$6$$(1,6,8,5,2,4)(3,7)$$-\zeta_{3} - 1$
$4$$6$$(1,4,2,5,8,6)(3,7)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.