Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(799\)\(\medspace = 17 \cdot 47 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.2.13583.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.799.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{17}, \sqrt{-47})\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} - 2x^{3} + 9x^{2} - 8x - 1 \)
|
The roots of $f$ are computed in $\Q_{ 53 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 16 + 18\cdot 53 + 36\cdot 53^{2} + 43\cdot 53^{3} + 27\cdot 53^{4} +O(53^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 25 + 11\cdot 53 + 51\cdot 53^{2} + 3\cdot 53^{3} + 29\cdot 53^{4} +O(53^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 29 + 41\cdot 53 + 53^{2} + 49\cdot 53^{3} + 23\cdot 53^{4} +O(53^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 38 + 34\cdot 53 + 16\cdot 53^{2} + 9\cdot 53^{3} + 25\cdot 53^{4} +O(53^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,4)(2,3)$ | $-2$ | |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ | |
$2$ | $2$ | $(1,4)$ | $0$ | ✓ |
$2$ | $4$ | $(1,3,4,2)$ | $0$ |