Properties

Label 2.79.5t2.a.a
Dimension $2$
Group $D_{5}$
Conductor $79$
Root number $1$
Indicator $1$

Related objects

Learn more about

Basic invariants

Dimension: $2$
Group: $D_{5}$
Conductor: \(79\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 5.1.6241.1
Galois orbit size: $2$
Smallest permutation container: $D_{5}$
Parity: odd
Determinant: 1.79.2t1.a.a
Projective image: $D_5$
Projective stem field: 5.1.6241.1

Defining polynomial

$f(x)$$=$\(x^{5} - x^{4} + x^{3} - 2 x^{2} + 3 x - 1\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 7 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 7 }$: \(x^{2} + 6 x + 3\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a + 3 + 3 a\cdot 7 + \left(4 a + 2\right)\cdot 7^{2} + \left(4 a + 5\right)\cdot 7^{3} + \left(4 a + 6\right)\cdot 7^{4} +O(7^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 2 + 3\cdot 7 + 4\cdot 7^{2} + 2\cdot 7^{4} +O(7^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + \left(5 a + 4\right)\cdot 7 + \left(4 a + 2\right)\cdot 7^{2} + 3\cdot 7^{3} + \left(a + 2\right)\cdot 7^{4} +O(7^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 3 a + 4 + \left(a + 5\right)\cdot 7 + \left(2 a + 1\right)\cdot 7^{2} + \left(6 a + 6\right)\cdot 7^{3} + \left(5 a + 2\right)\cdot 7^{4} +O(7^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 4 a + 6 + 3 a\cdot 7 + \left(2 a + 3\right)\cdot 7^{2} + \left(2 a + 5\right)\cdot 7^{3} + \left(2 a + 6\right)\cdot 7^{4} +O(7^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(2,5)$
$(1,2)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$2$
$5$$2$$(1,3)(2,5)$$0$
$2$$5$$(1,5,4,2,3)$$\zeta_{5}^{3} + \zeta_{5}^{2}$
$2$$5$$(1,4,3,5,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$

The blue line marks the conjugacy class containing complex conjugation.