Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(776\)\(\medspace = 2^{3} \cdot 97 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.6208.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.776.2t1.b.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(\sqrt{-2}, \sqrt{97})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 2x^{3} + 5x^{2} + 2x + 3 \) . |
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 4 + 56\cdot 73 + 17\cdot 73^{2} + 9\cdot 73^{3} + 3\cdot 73^{4} +O(73^{5})\) |
$r_{ 2 }$ | $=$ | \( 23 + 64\cdot 73 + 5\cdot 73^{2} + 29\cdot 73^{3} + 65\cdot 73^{4} +O(73^{5})\) |
$r_{ 3 }$ | $=$ | \( 58 + 10\cdot 73 + 14\cdot 73^{2} + 5\cdot 73^{3} + 14\cdot 73^{4} +O(73^{5})\) |
$r_{ 4 }$ | $=$ | \( 63 + 14\cdot 73 + 35\cdot 73^{2} + 29\cdot 73^{3} + 63\cdot 73^{4} +O(73^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,3)(2,4)$ | $-2$ | |
$2$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$2$ | $2$ | $(1,3)$ | $0$ | |
$2$ | $4$ | $(1,4,3,2)$ | $0$ |