Properties

Label 2.776.4t3.c.a
Dimension $2$
Group $D_{4}$
Conductor $776$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(776\)\(\medspace = 2^{3} \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.6208.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.776.2t1.b.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{97})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 5x^{2} + 2x + 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 4 + 56\cdot 73 + 17\cdot 73^{2} + 9\cdot 73^{3} + 3\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 64\cdot 73 + 5\cdot 73^{2} + 29\cdot 73^{3} + 65\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 58 + 10\cdot 73 + 14\cdot 73^{2} + 5\cdot 73^{3} + 14\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 63 + 14\cdot 73 + 35\cdot 73^{2} + 29\cdot 73^{3} + 63\cdot 73^{4} +O(73^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$