Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 a + \left(14 a + 10\right)\cdot 17 + \left(13 a + 6\right)\cdot 17^{2} + \left(3 a + 7\right)\cdot 17^{3} + \left(2 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 15 + \left(2 a + 9\right)\cdot 17 + \left(3 a + 5\right)\cdot 17^{2} + \left(13 a + 14\right)\cdot 17^{3} + \left(14 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 a + 12 + \left(12 a + 15\right)\cdot 17 + 7 a\cdot 17^{2} + \left(8 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 14 + 16\cdot 17^{2} + 10\cdot 17^{3} + 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 a + 6 + 4 a\cdot 17 + \left(9 a + 13\right)\cdot 17^{2} + \left(16 a + 9\right)\cdot 17^{3} + \left(8 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 6 a + \left(2 a + 9\right)\cdot 17 + \left(4 a + 3\right)\cdot 17^{2} + \left(3 a + 13\right)\cdot 17^{3} + \left(15 a + 10\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 11 a + 6 + \left(14 a + 5\right)\cdot 17 + \left(12 a + 5\right)\cdot 17^{2} + \left(13 a + 12\right)\cdot 17^{3} + \left(a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,7)(3,4)(5,6)$ |
| $(1,5)(2,7)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $7$ | $2$ | $(1,7)(3,4)(5,6)$ | $0$ |
| $2$ | $7$ | $(1,2,7,5,4,3,6)$ | $\zeta_{7}^{5} + \zeta_{7}^{2}$ |
| $2$ | $7$ | $(1,7,4,6,2,5,3)$ | $\zeta_{7}^{4} + \zeta_{7}^{3}$ |
| $2$ | $7$ | $(1,5,6,7,3,2,4)$ | $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ |
The blue line marks the conjugacy class containing complex conjugation.