Properties

Label 2.743.7t2.1c1
Dimension 2
Group $D_{7}$
Conductor $ 743 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$743 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 5 x^{5} - 12 x^{4} + 10 x^{3} - 11 x^{2} + 13 x + 1 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.743.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + \left(14 a + 10\right)\cdot 17 + \left(13 a + 6\right)\cdot 17^{2} + \left(3 a + 7\right)\cdot 17^{3} + \left(2 a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 15 + \left(2 a + 9\right)\cdot 17 + \left(3 a + 5\right)\cdot 17^{2} + \left(13 a + 14\right)\cdot 17^{3} + \left(14 a + 3\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 12 + \left(12 a + 15\right)\cdot 17 + 7 a\cdot 17^{2} + \left(8 a + 8\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 14 + 16\cdot 17^{2} + 10\cdot 17^{3} + 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 6 + 4 a\cdot 17 + \left(9 a + 13\right)\cdot 17^{2} + \left(16 a + 9\right)\cdot 17^{3} + \left(8 a + 15\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + \left(2 a + 9\right)\cdot 17 + \left(4 a + 3\right)\cdot 17^{2} + \left(3 a + 13\right)\cdot 17^{3} + \left(15 a + 10\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 11 a + 6 + \left(14 a + 5\right)\cdot 17 + \left(12 a + 5\right)\cdot 17^{2} + \left(13 a + 12\right)\cdot 17^{3} + \left(a + 5\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,7)(3,4)(5,6)$
$(1,5)(2,7)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,7)(3,4)(5,6)$$0$
$2$$7$$(1,2,7,5,4,3,6)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,7,4,6,2,5,3)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$$7$$(1,5,6,7,3,2,4)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
The blue line marks the conjugacy class containing complex conjugation.