Basic invariants
Dimension: | $2$ |
Group: | $S_3$ |
Conductor: | \(733\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 3.3.733.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_3$ |
Parity: | even |
Determinant: | 1.733.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.3.733.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{3} - x^{2} - 7x + 8 \)
|
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 5 + 39\cdot 73 + 59\cdot 73^{2} + 38\cdot 73^{3} + 42\cdot 73^{4} +O(73^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 6 + 9\cdot 73 + 41\cdot 73^{2} + 42\cdot 73^{3} + 31\cdot 73^{4} +O(73^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 63 + 24\cdot 73 + 45\cdot 73^{2} + 64\cdot 73^{3} + 71\cdot 73^{4} +O(73^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | ✓ |
$3$ | $2$ | $(1,2)$ | $0$ | |
$2$ | $3$ | $(1,2,3)$ | $-1$ |