Basic invariants
Dimension: | $2$ |
Group: | $D_{4}$ |
Conductor: | \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.2880.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{4}$ |
Parity: | odd |
Determinant: | 1.20.2t1.a.a |
Projective image: | $C_2^2$ |
Projective field: | Galois closure of \(\Q(i, \sqrt{5})\) |
Defining polynomial
$f(x)$ | $=$ | \( x^{4} - 2x^{3} - 4x^{2} + 2x + 13 \) . |
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 14 + 23\cdot 41 + 12\cdot 41^{2} + 21\cdot 41^{3} + 4\cdot 41^{4} +O(41^{5})\) |
$r_{ 2 }$ | $=$ | \( 19 + 8\cdot 41 + 35\cdot 41^{2} + 37\cdot 41^{3} + 11\cdot 41^{4} +O(41^{5})\) |
$r_{ 3 }$ | $=$ | \( 21 + 9\cdot 41 + 6\cdot 41^{2} + 20\cdot 41^{3} + 6\cdot 41^{4} +O(41^{5})\) |
$r_{ 4 }$ | $=$ | \( 30 + 40\cdot 41 + 27\cdot 41^{2} + 2\cdot 41^{3} + 18\cdot 41^{4} +O(41^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,2)(3,4)$ | $-2$ |
$2$ | $2$ | $(1,3)(2,4)$ | $0$ |
$2$ | $2$ | $(1,2)$ | $0$ |
$2$ | $4$ | $(1,4,2,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.