Properties

Label 2.709.8t12.1c2
Dimension 2
Group $\SL(2,3)$
Conductor $ 709 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$709 $
Artin number field: Splitting field of $f= x^{8} + 19 x^{6} + 106 x^{4} + 215 x^{2} + 144 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.709.3t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 16 a^{2} + 6 a + 1 + \left(a^{2} + 7 a + 4\right)\cdot 17 + \left(9 a^{2} + 13 a + 15\right)\cdot 17^{2} + \left(11 a^{2} + 6 a + 1\right)\cdot 17^{3} + \left(a + 4\right)\cdot 17^{4} + \left(8 a^{2} + 13 a + 2\right)\cdot 17^{5} + \left(a^{2} + 16 a + 14\right)\cdot 17^{6} + \left(10 a^{2} + 15 a + 7\right)\cdot 17^{7} + \left(14 a^{2} + 12 a\right)\cdot 17^{8} + \left(2 a^{2} + 11 a\right)\cdot 17^{9} + \left(15 a^{2} + 14 a + 1\right)\cdot 17^{10} + \left(16 a^{2} + 15 a + 5\right)\cdot 17^{11} + \left(13 a^{2} + 11 a + 11\right)\cdot 17^{12} + \left(2 a^{2} + 12 a + 3\right)\cdot 17^{13} + \left(4 a^{2} + 3 a + 5\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 13 + \left(11 a^{2} + 14 a + 15\right)\cdot 17 + \left(8 a^{2} + 13 a + 14\right)\cdot 17^{2} + \left(9 a^{2} + 7 a + 11\right)\cdot 17^{3} + \left(4 a^{2} + 8 a + 6\right)\cdot 17^{4} + \left(3 a^{2} + 6 a + 10\right)\cdot 17^{5} + \left(5 a^{2} + 7 a + 16\right)\cdot 17^{6} + \left(2 a^{2} + a + 13\right)\cdot 17^{7} + \left(15 a^{2} + 5 a\right)\cdot 17^{8} + \left(11 a^{2} + 2 a + 6\right)\cdot 17^{9} + \left(15 a^{2} + 12 a + 1\right)\cdot 17^{10} + \left(a^{2} + 6 a + 12\right)\cdot 17^{11} + \left(2 a^{2} + 9 a + 14\right)\cdot 17^{12} + \left(9 a^{2} + 5 a + 7\right)\cdot 17^{13} + \left(13 a^{2} + 14 a + 11\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 16 a^{2} + 2 a + 9 + \left(12 a^{2} + 5 a + 11\right)\cdot 17 + \left(10 a + 2\right)\cdot 17^{2} + \left(4 a^{2} + 14 a + 14\right)\cdot 17^{3} + \left(5 a^{2} + 9 a + 16\right)\cdot 17^{4} + \left(11 a^{2} + 2 a + 4\right)\cdot 17^{5} + \left(6 a^{2} + 7 a + 8\right)\cdot 17^{6} + \left(12 a^{2} + 1\right)\cdot 17^{7} + \left(12 a^{2} + a + 12\right)\cdot 17^{8} + \left(14 a^{2} + 14 a + 11\right)\cdot 17^{9} + \left(13 a^{2} + 9 a + 12\right)\cdot 17^{10} + \left(a^{2} + 5 a + 1\right)\cdot 17^{11} + \left(16 a^{2} + 4 a + 3\right)\cdot 17^{12} + \left(11 a^{2} + a + 6\right)\cdot 17^{13} + \left(a + 9\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 13 + 7\cdot 17^{2} + 12\cdot 17^{3} + 10\cdot 17^{4} + 15\cdot 17^{5} + 6\cdot 17^{6} + 4\cdot 17^{7} + 15\cdot 17^{8} + 10\cdot 17^{9} + 13\cdot 17^{10} + 4\cdot 17^{11} + 13\cdot 17^{12} + 6\cdot 17^{13} + 7\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 5 }$ $=$ $ a^{2} + 11 a + 16 + \left(15 a^{2} + 9 a + 12\right)\cdot 17 + \left(7 a^{2} + 3 a + 1\right)\cdot 17^{2} + \left(5 a^{2} + 10 a + 15\right)\cdot 17^{3} + \left(16 a^{2} + 15 a + 12\right)\cdot 17^{4} + \left(8 a^{2} + 3 a + 14\right)\cdot 17^{5} + \left(15 a^{2} + 2\right)\cdot 17^{6} + \left(6 a^{2} + a + 9\right)\cdot 17^{7} + \left(2 a^{2} + 4 a + 16\right)\cdot 17^{8} + \left(14 a^{2} + 5 a + 16\right)\cdot 17^{9} + \left(a^{2} + 2 a + 15\right)\cdot 17^{10} + \left(a + 11\right)\cdot 17^{11} + \left(3 a^{2} + 5 a + 5\right)\cdot 17^{12} + \left(14 a^{2} + 4 a + 13\right)\cdot 17^{13} + \left(12 a^{2} + 13 a + 11\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 4 + \left(6 a^{2} + 2 a + 1\right)\cdot 17 + \left(8 a^{2} + 3 a + 2\right)\cdot 17^{2} + \left(7 a^{2} + 9 a + 5\right)\cdot 17^{3} + \left(12 a^{2} + 8 a + 10\right)\cdot 17^{4} + \left(13 a^{2} + 10 a + 6\right)\cdot 17^{5} + \left(11 a^{2} + 9 a\right)\cdot 17^{6} + \left(14 a^{2} + 15 a + 3\right)\cdot 17^{7} + \left(a^{2} + 11 a + 16\right)\cdot 17^{8} + \left(5 a^{2} + 14 a + 10\right)\cdot 17^{9} + \left(a^{2} + 4 a + 15\right)\cdot 17^{10} + \left(15 a^{2} + 10 a + 4\right)\cdot 17^{11} + \left(14 a^{2} + 7 a + 2\right)\cdot 17^{12} + \left(7 a^{2} + 11 a + 9\right)\cdot 17^{13} + \left(3 a^{2} + 2 a + 5\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 7 }$ $=$ $ a^{2} + 15 a + 8 + \left(4 a^{2} + 11 a + 5\right)\cdot 17 + \left(16 a^{2} + 6 a + 14\right)\cdot 17^{2} + \left(12 a^{2} + 2 a + 2\right)\cdot 17^{3} + \left(11 a^{2} + 7 a\right)\cdot 17^{4} + \left(5 a^{2} + 14 a + 12\right)\cdot 17^{5} + \left(10 a^{2} + 9 a + 8\right)\cdot 17^{6} + \left(4 a^{2} + 16 a + 15\right)\cdot 17^{7} + \left(4 a^{2} + 15 a + 4\right)\cdot 17^{8} + \left(2 a^{2} + 2 a + 5\right)\cdot 17^{9} + \left(3 a^{2} + 7 a + 4\right)\cdot 17^{10} + \left(15 a^{2} + 11 a + 15\right)\cdot 17^{11} + \left(12 a + 13\right)\cdot 17^{12} + \left(5 a^{2} + 15 a + 10\right)\cdot 17^{13} + \left(16 a^{2} + 15 a + 7\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 4 + 16\cdot 17 + 9\cdot 17^{2} + 4\cdot 17^{3} + 6\cdot 17^{4} + 17^{5} + 10\cdot 17^{6} + 12\cdot 17^{7} + 17^{8} + 6\cdot 17^{9} + 3\cdot 17^{10} + 12\cdot 17^{11} + 3\cdot 17^{12} + 10\cdot 17^{13} + 9\cdot 17^{14} +O\left(17^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,5,7)(2,8,6,4)$
$(1,7,2)(3,6,5)$
$(1,8,5,4)(2,7,6,3)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(1,7,2)(3,6,5)$$\zeta_{3} + 1$
$4$$3$$(1,2,7)(3,5,6)$$-\zeta_{3}$
$6$$4$$(1,3,5,7)(2,8,6,4)$$0$
$4$$6$$(1,3,2,5,7,6)(4,8)$$-\zeta_{3} - 1$
$4$$6$$(1,6,7,5,2,3)(4,8)$$\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.