Properties

Label 2.6984.4t3.c
Dimension $2$
Group $D_{4}$
Conductor $6984$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(6984\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 97 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.677448.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{97})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 11 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ \( 1 + 7\cdot 11 + 9\cdot 11^{2} + 8\cdot 11^{3} + 6\cdot 11^{4} + 3\cdot 11^{5} + 9\cdot 11^{7} +O(11^{8})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 + 4\cdot 11 + 7\cdot 11^{3} + 6\cdot 11^{4} + 5\cdot 11^{5} + 6\cdot 11^{6} + 6\cdot 11^{7} +O(11^{8})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 + 6\cdot 11 + 10\cdot 11^{2} + 3\cdot 11^{3} + 4\cdot 11^{4} + 5\cdot 11^{5} + 4\cdot 11^{6} + 4\cdot 11^{7} +O(11^{8})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 + 3\cdot 11 + 11^{2} + 2\cdot 11^{3} + 4\cdot 11^{4} + 7\cdot 11^{5} + 10\cdot 11^{6} + 11^{7} +O(11^{8})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.