Properties

Label 2.663.4t3.b.a
Dimension $2$
Group $D_{4}$
Conductor $663$
Root number $1$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(663\)\(\medspace = 3 \cdot 13 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: 4.2.8619.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.663.2t1.a.a
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{13}, \sqrt{-51})\)

Defining polynomial

$f(x)$$=$\(x^{4} - 2 x^{3} + 2 x^{2} - x - 3\)  Toggle raw display.

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 97\cdot 103 + 86\cdot 103^{2} + 52\cdot 103^{3} + 87\cdot 103^{4} +O(103^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 9 + 22\cdot 103 + 22\cdot 103^{2} + 97\cdot 103^{3} + 36\cdot 103^{4} +O(103^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 95 + 80\cdot 103 + 80\cdot 103^{2} + 5\cdot 103^{3} + 66\cdot 103^{4} +O(103^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 98 + 5\cdot 103 + 16\cdot 103^{2} + 50\cdot 103^{3} + 15\cdot 103^{4} +O(103^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$

The blue line marks the conjugacy class containing complex conjugation.