Properties

Label 2.663.4t3.b
Dimension $2$
Group $D_{4}$
Conductor $663$
Indicator $1$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(663\)\(\medspace = 3 \cdot 13 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.2.8619.2
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: \(\Q(\sqrt{13}, \sqrt{-51})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 6 + 97\cdot 103 + 86\cdot 103^{2} + 52\cdot 103^{3} + 87\cdot 103^{4} +O(103^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 9 + 22\cdot 103 + 22\cdot 103^{2} + 97\cdot 103^{3} + 36\cdot 103^{4} +O(103^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 95 + 80\cdot 103 + 80\cdot 103^{2} + 5\cdot 103^{3} + 66\cdot 103^{4} +O(103^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 98 + 5\cdot 103 + 16\cdot 103^{2} + 50\cdot 103^{3} + 15\cdot 103^{4} +O(103^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.