Properties

Label 2.643.24t22.2
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 643 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$643 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - x^{6} + 5 x^{5} - 3 x^{4} + 2 x^{3} - 6 x^{2} + 9 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 40 + \left(15 a + 42\right)\cdot 43 + \left(30 a + 10\right)\cdot 43^{2} + \left(24 a + 20\right)\cdot 43^{3} + \left(42 a + 12\right)\cdot 43^{4} + \left(14 a + 26\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 13 + \left(27 a + 42\right)\cdot 43 + \left(12 a + 25\right)\cdot 43^{2} + \left(18 a + 14\right)\cdot 43^{3} + 30\cdot 43^{4} + \left(28 a + 41\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 37 + 18\cdot 43 + 22\cdot 43^{2} + 7\cdot 43^{3} + 38\cdot 43^{4} + 22\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ a + 36 + \left(42 a + 6\right)\cdot 43 + \left(26 a + 35\right)\cdot 43^{2} + \left(4 a + 18\right)\cdot 43^{3} + \left(35 a + 25\right)\cdot 43^{4} + \left(12 a + 37\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 40\cdot 43^{2} + 33\cdot 43^{3} + 32\cdot 43^{4} + 27\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 42 a + 37 + 4\cdot 43 + \left(16 a + 20\right)\cdot 43^{2} + \left(38 a + 39\right)\cdot 43^{3} + \left(7 a + 12\right)\cdot 43^{4} + \left(30 a + 15\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 12 a + 36 + \left(25 a + 42\right)\cdot 43 + 40 a\cdot 43^{2} + \left(22 a + 6\right)\cdot 43^{3} + \left(26 a + 8\right)\cdot 43^{4} + \left(37 a + 16\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 31 a + 5 + \left(17 a + 13\right)\cdot 43 + \left(2 a + 16\right)\cdot 43^{2} + \left(20 a + 31\right)\cdot 43^{3} + \left(16 a + 11\right)\cdot 43^{4} + \left(5 a + 27\right)\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,3)(2,8,5)$
$(1,4,2,7)(3,6,5,8)$
$(1,6,2,8)(3,7,5,4)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,5)(2,3)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,2)(3,5)(4,7)(6,8)$ $-2$ $-2$
$12$ $2$ $(1,5)(2,3)(6,8)$ $0$ $0$
$8$ $3$ $(1,4,8)(2,7,6)$ $-1$ $-1$
$6$ $4$ $(1,4,2,7)(3,6,5,8)$ $0$ $0$
$8$ $6$ $(1,2)(3,6,7,5,8,4)$ $1$ $1$
$6$ $8$ $(1,8,5,4,2,6,3,7)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,6,5,7,2,8,3,4)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.