Basic invariants
Dimension: | $2$ |
Group: | $S_3$ |
Conductor: | \(64220\)\(\medspace = 2^{2} \cdot 5 \cdot 13^{2} \cdot 19 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 3.3.64220.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_3$ |
Parity: | even |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.3.64220.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 16 + 10\cdot 37 + 21\cdot 37^{2} + 25\cdot 37^{3} + 25\cdot 37^{4} +O(37^{5})\) |
$r_{ 2 }$ | $=$ | \( 25 + 12\cdot 37^{2} + 8\cdot 37^{3} + 4\cdot 37^{4} +O(37^{5})\) |
$r_{ 3 }$ | $=$ | \( 34 + 25\cdot 37 + 3\cdot 37^{2} + 3\cdot 37^{3} + 7\cdot 37^{4} +O(37^{5})\) |
Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,2)$ | $0$ |
$2$ | $3$ | $(1,2,3)$ | $-1$ |