Properties

Label 2.6400.8t17.c.b
Dimension $2$
Group $C_4\wr C_2$
Conductor $6400$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(6400\)\(\medspace = 2^{8} \cdot 5^{2} \)
Artin stem field: Galois closure of 8.0.2097152000.7
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.5.4t1.a.b
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.8000.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 4x^{4} + 20 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.

Roots:
$r_{ 1 }$ $=$ \( 8 + 113\cdot 421 + 277\cdot 421^{2} + 130\cdot 421^{3} + 130\cdot 421^{4} + 194\cdot 421^{5} + 405\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 138 + 164\cdot 421 + 368\cdot 421^{2} + 365\cdot 421^{3} + 85\cdot 421^{4} + 53\cdot 421^{5} + 184\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 189 + 279\cdot 421 + 121\cdot 421^{2} + 145\cdot 421^{3} + 154\cdot 421^{5} + 9\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 208 + 73\cdot 421 + 19\cdot 421^{2} + 285\cdot 421^{3} + 286\cdot 421^{4} + 123\cdot 421^{5} + 313\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 213 + 347\cdot 421 + 401\cdot 421^{2} + 135\cdot 421^{3} + 134\cdot 421^{4} + 297\cdot 421^{5} + 107\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 232 + 141\cdot 421 + 299\cdot 421^{2} + 275\cdot 421^{3} + 420\cdot 421^{4} + 266\cdot 421^{5} + 411\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 283 + 256\cdot 421 + 52\cdot 421^{2} + 55\cdot 421^{3} + 335\cdot 421^{4} + 367\cdot 421^{5} + 236\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 413 + 307\cdot 421 + 143\cdot 421^{2} + 290\cdot 421^{3} + 290\cdot 421^{4} + 226\cdot 421^{5} + 15\cdot 421^{6} +O(421^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,3,8,6)(2,4,7,5)$
$(1,8)(3,6)$
$(1,3,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(3,6)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$1$$4$$(1,6,8,3)(2,4,7,5)$$2 \zeta_{4}$
$1$$4$$(1,3,8,6)(2,5,7,4)$$-2 \zeta_{4}$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,3,8,6)$$\zeta_{4} - 1$
$2$$4$$(1,6,8,3)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,4,7,5)(3,6)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,5,7,4)(3,6)$$\zeta_{4} + 1$
$4$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$8$$(1,4,6,7,8,5,3,2)$$0$
$4$$8$$(1,7,3,4,8,2,6,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.