Properties

Label 2.607.8t12.1c1
Dimension 2
Group $\SL(2,3)$
Conductor $ 607 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$607 $
Artin number field: Splitting field of $f= x^{8} - 15 x^{6} + 47 x^{4} - 38 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even
Determinant: 1.607.3t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 3 a^{2} + 14 a + 2 + \left(4 a^{2} + a + 3\right)\cdot 17 + \left(12 a^{2} + 14 a + 10\right)\cdot 17^{2} + \left(6 a + 10\right)\cdot 17^{3} + \left(14 a^{2} + 8 a + 6\right)\cdot 17^{4} + \left(8 a^{2} + 8 a + 12\right)\cdot 17^{5} + \left(5 a^{2} + 15 a + 4\right)\cdot 17^{6} + \left(9 a^{2} + 15 a + 7\right)\cdot 17^{7} + \left(5 a^{2} + 2 a + 11\right)\cdot 17^{8} + \left(7 a^{2} + 8 a + 14\right)\cdot 17^{9} + \left(9 a^{2} + 4 a + 5\right)\cdot 17^{10} + \left(16 a^{2} + 12 a + 2\right)\cdot 17^{11} + \left(8 a^{2} + 9 a + 4\right)\cdot 17^{12} + \left(5 a^{2} + 3 a + 6\right)\cdot 17^{13} + \left(2 a^{2} + 5 a + 2\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 9 a^{2} + 11 a + 6 + \left(15 a^{2} + 5 a + 16\right)\cdot 17 + 13\cdot 17^{2} + \left(6 a^{2} + 11 a + 2\right)\cdot 17^{3} + \left(6 a^{2} + 14 a + 7\right)\cdot 17^{4} + \left(6 a^{2} + 15 a + 16\right)\cdot 17^{5} + \left(15 a^{2} + 12 a + 16\right)\cdot 17^{6} + \left(14 a^{2} + 9 a + 10\right)\cdot 17^{7} + \left(4 a^{2} + 7 a + 16\right)\cdot 17^{8} + \left(8 a^{2} + 8 a + 3\right)\cdot 17^{9} + \left(14 a^{2} + a + 9\right)\cdot 17^{10} + \left(2 a^{2} + 7 a + 4\right)\cdot 17^{11} + \left(13 a + 15\right)\cdot 17^{12} + \left(6 a^{2} + 14 a\right)\cdot 17^{13} + \left(12 a^{2} + 3 a + 9\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 5 a^{2} + 9 a + 9 + \left(14 a^{2} + 9 a + 15\right)\cdot 17 + \left(3 a^{2} + 2 a + 15\right)\cdot 17^{2} + \left(10 a^{2} + 16 a + 16\right)\cdot 17^{3} + \left(13 a^{2} + 10 a + 11\right)\cdot 17^{4} + \left(a^{2} + 9 a + 7\right)\cdot 17^{5} + \left(13 a^{2} + 5 a + 15\right)\cdot 17^{6} + \left(9 a^{2} + 8 a + 1\right)\cdot 17^{7} + \left(6 a^{2} + 6 a + 12\right)\cdot 17^{8} + \left(a^{2} + 10\right)\cdot 17^{9} + \left(10 a^{2} + 11 a\right)\cdot 17^{10} + \left(14 a^{2} + 14 a + 1\right)\cdot 17^{11} + \left(7 a^{2} + 10 a + 9\right)\cdot 17^{12} + \left(5 a^{2} + 15 a\right)\cdot 17^{13} + \left(2 a^{2} + 7 a + 8\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 11 + 7\cdot 17 + 13\cdot 17^{2} + 3\cdot 17^{3} + 15\cdot 17^{4} + 14\cdot 17^{5} + 9\cdot 17^{6} + 6\cdot 17^{8} + 6\cdot 17^{9} + 16\cdot 17^{10} + 17^{11} + 9\cdot 17^{12} + 15\cdot 17^{13} + 5\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 14 a^{2} + 3 a + 15 + \left(12 a^{2} + 15 a + 13\right)\cdot 17 + \left(4 a^{2} + 2 a + 6\right)\cdot 17^{2} + \left(16 a^{2} + 10 a + 6\right)\cdot 17^{3} + \left(2 a^{2} + 8 a + 10\right)\cdot 17^{4} + \left(8 a^{2} + 8 a + 4\right)\cdot 17^{5} + \left(11 a^{2} + a + 12\right)\cdot 17^{6} + \left(7 a^{2} + a + 9\right)\cdot 17^{7} + \left(11 a^{2} + 14 a + 5\right)\cdot 17^{8} + \left(9 a^{2} + 8 a + 2\right)\cdot 17^{9} + \left(7 a^{2} + 12 a + 11\right)\cdot 17^{10} + \left(4 a + 14\right)\cdot 17^{11} + \left(8 a^{2} + 7 a + 12\right)\cdot 17^{12} + \left(11 a^{2} + 13 a + 10\right)\cdot 17^{13} + \left(14 a^{2} + 11 a + 14\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + 6 a + 11 + \left(a^{2} + 11 a\right)\cdot 17 + \left(16 a^{2} + 16 a + 3\right)\cdot 17^{2} + \left(10 a^{2} + 5 a + 14\right)\cdot 17^{3} + \left(10 a^{2} + 2 a + 9\right)\cdot 17^{4} + \left(10 a^{2} + a\right)\cdot 17^{5} + \left(a^{2} + 4 a\right)\cdot 17^{6} + \left(2 a^{2} + 7 a + 6\right)\cdot 17^{7} + \left(12 a^{2} + 9 a\right)\cdot 17^{8} + \left(8 a^{2} + 8 a + 13\right)\cdot 17^{9} + \left(2 a^{2} + 15 a + 7\right)\cdot 17^{10} + \left(14 a^{2} + 9 a + 12\right)\cdot 17^{11} + \left(16 a^{2} + 3 a + 1\right)\cdot 17^{12} + \left(10 a^{2} + 2 a + 16\right)\cdot 17^{13} + \left(4 a^{2} + 13 a + 7\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 7 }$ $=$ $ 12 a^{2} + 8 a + 8 + \left(2 a^{2} + 7 a + 1\right)\cdot 17 + \left(13 a^{2} + 14 a + 1\right)\cdot 17^{2} + 6 a^{2}17^{3} + \left(3 a^{2} + 6 a + 5\right)\cdot 17^{4} + \left(15 a^{2} + 7 a + 9\right)\cdot 17^{5} + \left(3 a^{2} + 11 a + 1\right)\cdot 17^{6} + \left(7 a^{2} + 8 a + 15\right)\cdot 17^{7} + \left(10 a^{2} + 10 a + 4\right)\cdot 17^{8} + \left(15 a^{2} + 16 a + 6\right)\cdot 17^{9} + \left(6 a^{2} + 5 a + 16\right)\cdot 17^{10} + \left(2 a^{2} + 2 a + 15\right)\cdot 17^{11} + \left(9 a^{2} + 6 a + 7\right)\cdot 17^{12} + \left(11 a^{2} + a + 16\right)\cdot 17^{13} + \left(14 a^{2} + 9 a + 8\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 8 }$ $=$ $ 6 + 9\cdot 17 + 3\cdot 17^{2} + 13\cdot 17^{3} + 17^{4} + 2\cdot 17^{5} + 7\cdot 17^{6} + 16\cdot 17^{7} + 10\cdot 17^{8} + 10\cdot 17^{9} + 15\cdot 17^{11} + 7\cdot 17^{12} + 17^{13} + 11\cdot 17^{14} +O\left(17^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8,6)(2,5,4)$
$(1,6,5,2)(3,8,7,4)$
$(1,3,5,7)(2,8,6,4)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$4$$3$$(1,8,6)(2,5,4)$$-\zeta_{3}$
$4$$3$$(1,6,8)(2,4,5)$$\zeta_{3} + 1$
$6$$4$$(1,3,5,7)(2,8,6,4)$$0$
$4$$6$$(1,6,3,5,2,7)(4,8)$$\zeta_{3}$
$4$$6$$(1,7,2,5,3,6)(4,8)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.