Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 21 + 81\cdot 139 + 91\cdot 139^{2} + 24\cdot 139^{3} + 117\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 47 + 71\cdot 139 + 15\cdot 139^{2} + 39\cdot 139^{3} + 128\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 65 + 102\cdot 139 + 123\cdot 139^{2} + 35\cdot 139^{3} + 74\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 82 + 8\cdot 139 + 18\cdot 139^{2} + 108\cdot 139^{3} + 100\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 107 + 49\cdot 139 + 102\cdot 139^{2} + 13\cdot 139^{3} + 64\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 120 + 108\cdot 139 + 53\cdot 139^{2} + 91\cdot 139^{3} + 91\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 126 + 37\cdot 139 + 83\cdot 139^{2} + 3\cdot 139^{3} + 7\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 128 + 95\cdot 139 + 67\cdot 139^{2} + 100\cdot 139^{3} + 111\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,3,5)(2,8,4,6)$ |
| $(1,4,3,2)(5,6,7,8)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $-2$ |
| $2$ | $4$ | $(1,7,3,5)(2,8,4,6)$ | $0$ |
| $2$ | $4$ | $(1,4,3,2)(5,6,7,8)$ | $0$ |
| $2$ | $4$ | $(1,8,3,6)(2,5,4,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.