Properties

Label 2.5e2_7e2_43.6t3.2
Dimension 2
Group $D_{6}$
Conductor $ 5^{2} \cdot 7^{2} \cdot 43 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$52675= 5^{2} \cdot 7^{2} \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 9 x^{4} - 31 x^{3} + 26 x^{2} + 84 x + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 26\cdot 29 + 7\cdot 29^{3} + 19\cdot 29^{4} + 23\cdot 29^{5} + 10\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ a + 15 + \left(24 a + 5\right)\cdot 29 + \left(22 a + 11\right)\cdot 29^{2} + \left(3 a + 6\right)\cdot 29^{3} + \left(15 a + 4\right)\cdot 29^{4} + \left(12 a + 12\right)\cdot 29^{5} + \left(14 a + 25\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 + 18\cdot 29 + 2\cdot 29^{2} + 6\cdot 29^{3} + 29^{4} + 18\cdot 29^{5} + 26\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 20 + \left(4 a + 8\right)\cdot 29 + \left(6 a + 14\right)\cdot 29^{2} + \left(25 a + 2\right)\cdot 29^{3} + \left(13 a + 18\right)\cdot 29^{4} + \left(16 a + 1\right)\cdot 29^{5} + \left(14 a + 27\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ a + 1 + \left(24 a + 27\right)\cdot 29 + \left(22 a + 12\right)\cdot 29^{2} + \left(3 a + 5\right)\cdot 29^{3} + \left(15 a + 15\right)\cdot 29^{4} + \left(12 a + 6\right)\cdot 29^{5} + \left(14 a + 12\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 6 + \left(4 a + 1\right)\cdot 29 + \left(6 a + 16\right)\cdot 29^{2} + \left(25 a + 1\right)\cdot 29^{3} + 13 a\cdot 29^{4} + \left(16 a + 25\right)\cdot 29^{5} + \left(14 a + 13\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,2,4)(3,5,6)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-2$
$3$ $2$ $(2,4)(5,6)$ $0$
$3$ $2$ $(1,3)(2,6)(4,5)$ $0$
$2$ $3$ $(1,2,4)(3,5,6)$ $-1$
$2$ $6$ $(1,5,4,3,2,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.