Properties

Label 2.1225.8t7.a.b
Dimension $2$
Group $C_8:C_2$
Conductor $1225$
Root number not computed
Indicator $0$

Related objects

Learn more about

Basic invariants

Dimension: $2$
Group: $C_8:C_2$
Conductor: \(1225\)\(\medspace = 5^{2} \cdot 7^{2}\)
Artin number field: Galois closure of 8.4.9191328125.1
Galois orbit size: $2$
Smallest permutation container: $C_8:C_2$
Parity: odd
Determinant: 1.5.4t1.a.b
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{5}, \sqrt{-7})\)

Defining polynomial

$f(x)$$=$$ x^{8} - x^{7} - 13 x^{6} - 13 x^{5} + 25 x^{4} + 38 x^{3} - 33 x^{2} - 34 x + 11 $.

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ $ 59 + 20\cdot 281 + 4\cdot 281^{2} + 109\cdot 281^{3} + 26\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 94 + 154\cdot 281 + 133\cdot 281^{2} + 251\cdot 281^{3} + 160\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 125 + 163\cdot 281 + 152\cdot 281^{2} + 22\cdot 281^{3} + 108\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 142 + 113\cdot 281 + 139\cdot 281^{2} + 240\cdot 281^{3} + 199\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 151 + 253\cdot 281 + 31\cdot 281^{2} + 135\cdot 281^{3} + 244\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 152 + 105\cdot 281 + 86\cdot 281^{2} + 4\cdot 281^{3} + 177\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 172 + 245\cdot 281 + 234\cdot 281^{2} + 212\cdot 281^{3} + 125\cdot 281^{4} +O\left(281^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 230 + 67\cdot 281 + 60\cdot 281^{2} + 148\cdot 281^{3} + 81\cdot 281^{4} +O\left(281^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,2,3,8,5,4,7)$
$(1,2,8,4)(3,5,7,6)$
$(1,8)(2,4)(3,7)(5,6)$
$(3,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,4)(3,7)(5,6)$$-2$
$2$$2$$(3,7)(5,6)$$0$
$1$$4$$(1,2,8,4)(3,5,7,6)$$-2 \zeta_{4}$
$1$$4$$(1,4,8,2)(3,6,7,5)$$2 \zeta_{4}$
$2$$4$$(1,2,8,4)(3,6,7,5)$$0$
$2$$8$$(1,6,2,3,8,5,4,7)$$0$
$2$$8$$(1,3,4,6,8,7,2,5)$$0$
$2$$8$$(1,6,4,7,8,5,2,3)$$0$
$2$$8$$(1,7,2,6,8,3,4,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.