Properties

Label 2.5e2_7e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$1225= 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} + 6 x^{3} + 8 x^{2} - 29 x + 22 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 31 a + 31 + \left(25 a + 6\right)\cdot 41 + \left(15 a + 25\right)\cdot 41^{2} + \left(28 a + 38\right)\cdot 41^{3} + \left(7 a + 13\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 33 + \left(11 a + 10\right)\cdot 41 + \left(27 a + 29\right)\cdot 41^{2} + \left(23 a + 9\right)\cdot 41^{3} + \left(35 a + 23\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 22 + \left(17 a + 15\right)\cdot 41 + \left(8 a + 39\right)\cdot 41^{2} + \left(34 a + 11\right)\cdot 41^{3} + \left(23 a + 28\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 30 + \left(23 a + 38\right)\cdot 41 + \left(32 a + 5\right)\cdot 41^{2} + \left(6 a + 24\right)\cdot 41^{3} + \left(17 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 1 + \left(15 a + 12\right)\cdot 41 + \left(25 a + 5\right)\cdot 41^{2} + \left(12 a + 26\right)\cdot 41^{3} + \left(33 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 7 + \left(29 a + 39\right)\cdot 41 + \left(13 a + 17\right)\cdot 41^{2} + \left(17 a + 12\right)\cdot 41^{3} + \left(5 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)(3,4)$
$(3,6,5)$
$(1,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,5)(2,6)(3,4)$ $0$ $0$
$1$ $3$ $(1,4,2)(3,6,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,2,4)(3,5,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(3,6,5)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(3,5,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,4,2)(3,5,6)$ $-1$ $-1$
$3$ $6$ $(1,5,4,3,2,6)$ $0$ $0$
$3$ $6$ $(1,6,2,3,4,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.