Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 + 5\cdot 23 + 7\cdot 23^{2} + 8\cdot 23^{3} + 16\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 8 + 14\cdot 23 + 5\cdot 23^{2} + 21\cdot 23^{3} + 19\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 12 + 3\cdot 23 + 10\cdot 23^{2} + 16\cdot 23^{3} + 9\cdot 23^{4} +O\left(23^{ 5 }\right)$ |
Generators of the action on the roots
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$ r_{ 1 }, r_{ 2 }, r_{ 3 } $
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $3$ |
$2$ |
$(1,2)$ |
$0$ |
| $2$ |
$3$ |
$(1,2,3)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.