Properties

Label 2.5e2_71.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 71 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1775= 5^{2} \cdot 71 $
Artin number field: Splitting field of $f= x^{8} + 29 x^{6} + 301 x^{4} + 29 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 39\cdot 79 + 47\cdot 79^{2} + 14\cdot 79^{3} + 57\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 47\cdot 79 + 65\cdot 79^{2} + 42\cdot 79^{3} + 27\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 47\cdot 79 + 75\cdot 79^{2} + 58\cdot 79^{3} + 64\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 30\cdot 79 + 9\cdot 79^{2} + 15\cdot 79^{3} + 42\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 + 48\cdot 79 + 69\cdot 79^{2} + 63\cdot 79^{3} + 36\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 + 31\cdot 79 + 3\cdot 79^{2} + 20\cdot 79^{3} + 14\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 66 + 31\cdot 79 + 13\cdot 79^{2} + 36\cdot 79^{3} + 51\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 73 + 39\cdot 79 + 31\cdot 79^{2} + 64\cdot 79^{3} + 21\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3,2,5)(4,8,6,7)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,3,2,5)(4,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.