Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(175\)\(\medspace = 5^{2} \cdot 7 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.153125.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.175.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{2} + 18x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 15 a + 1 + \left(5 a + 1\right)\cdot 19 + \left(17 a + 13\right)\cdot 19^{2} + 13\cdot 19^{3} + \left(6 a + 3\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 2 }$ | $=$ | \( 6 a + 2 + \left(13 a + 12\right)\cdot 19 + \left(16 a + 9\right)\cdot 19^{2} + \left(9 a + 5\right)\cdot 19^{3} + \left(12 a + 8\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 3 }$ | $=$ | \( 7 + 9\cdot 19 + 10\cdot 19^{2} + 3\cdot 19^{3} + 14\cdot 19^{4} +O(19^{5})\) |
$r_{ 4 }$ | $=$ | \( 13 a + 8 + 5 a\cdot 19 + \left(2 a + 13\right)\cdot 19^{2} + \left(9 a + 17\right)\cdot 19^{3} + \left(6 a + 10\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 5 }$ | $=$ | \( 4 a + 16 + \left(13 a + 10\right)\cdot 19 + \left(a + 5\right)\cdot 19^{2} + \left(18 a + 16\right)\cdot 19^{3} + \left(12 a + 8\right)\cdot 19^{4} +O(19^{5})\) |
$r_{ 6 }$ | $=$ | \( 5 + 4\cdot 19 + 5\cdot 19^{2} + 11\cdot 19^{4} +O(19^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
$3$ | $2$ | $(1,3)(4,6)$ | $0$ |
$2$ | $3$ | $(1,5,3)(2,6,4)$ | $-1$ |
$2$ | $6$ | $(1,6,5,4,3,2)$ | $1$ |