Properties

Label 2.5e2_61.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 61 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1525= 5^{2} \cdot 61 $
Artin number field: Splitting field of $f= x^{8} - 29 x^{6} + 136 x^{4} - 29 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 64\cdot 109 + 96\cdot 109^{2} + 14\cdot 109^{3} + 30\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 + 66\cdot 109 + 102\cdot 109^{2} + 77\cdot 109^{3} + 90\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 88\cdot 109 + 75\cdot 109^{2} + 99\cdot 109^{3} + 80\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 33\cdot 109 + 94\cdot 109^{2} + 78\cdot 109^{3} + 87\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 57 + 75\cdot 109 + 14\cdot 109^{2} + 30\cdot 109^{3} + 21\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 + 20\cdot 109 + 33\cdot 109^{2} + 9\cdot 109^{3} + 28\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 65 + 42\cdot 109 + 6\cdot 109^{2} + 31\cdot 109^{3} + 18\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 89 + 44\cdot 109 + 12\cdot 109^{2} + 94\cdot 109^{3} + 78\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5)(3,4,8,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,6,5)(3,4,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.