Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 52\cdot 109 + 101\cdot 109^{2} + 97\cdot 109^{3} + 25\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 31\cdot 109 + 54\cdot 109^{2} + 41\cdot 109^{3} + 70\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 87 + 77\cdot 109 + 54\cdot 109^{2} + 67\cdot 109^{3} + 38\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 102 + 56\cdot 109 + 7\cdot 109^{2} + 11\cdot 109^{3} + 83\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.