Properties

Label 2.5e2_59.8t8.1c2
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 59 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$1475= 5^{2} \cdot 59 $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} + 14 x^{5} + 6 x^{4} - 15 x^{3} + 5 x^{2} + 10 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.59.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 30\cdot 79 + 15\cdot 79^{2} + 70\cdot 79^{3} + 22\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 38\cdot 79 + 77\cdot 79^{2} + 11\cdot 79^{3} + 17\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 78\cdot 79 + 69\cdot 79^{2} + 49\cdot 79^{3} + 9\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 21\cdot 79 + 53\cdot 79^{2} + 55\cdot 79^{3} + 55\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 + 72\cdot 79 + 74\cdot 79^{2} + 14\cdot 79^{3} + 78\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 + 60\cdot 79 + 5\cdot 79^{2} + 45\cdot 79^{3} + 46\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 57\cdot 79^{2} + 12\cdot 79^{3} + 59\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 73 + 13\cdot 79 + 41\cdot 79^{2} + 55\cdot 79^{3} + 26\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5)(2,7,8,6)$
$(1,4)(2,8)(3,5)(6,7)$
$(1,4)(2,6)(7,8)$
$(1,6,5,8,4,7,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,8)(3,5)(6,7)$$-2$
$4$$2$$(1,4)(2,6)(7,8)$$0$
$2$$4$$(1,5,4,3)(2,6,8,7)$$0$
$4$$4$$(1,2,4,8)(3,6,5,7)$$0$
$2$$8$$(1,6,5,8,4,7,3,2)$$\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,7,5,2,4,6,3,8)$$-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.