Properties

Label 2.5e2_431.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 5^{2} \cdot 431 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$10775= 5^{2} \cdot 431 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 6 x^{2} + 24 x - 139 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 25\cdot 41 + 17\cdot 41^{2} + 30\cdot 41^{3} + 19\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 40\cdot 41 + 18\cdot 41^{2} + 15\cdot 41^{3} + 18\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 22\cdot 41 + 36\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 34\cdot 41 + 3\cdot 41^{2} + 34\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.