Properties

Label 2.5e2_41.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 5^{2} \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1025= 5^{2} \cdot 41 $
Artin number field: Splitting field of $f= x^{4} - 15 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 131 + 95\cdot 131^{2} + 75\cdot 131^{3} + 61\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 32\cdot 131 + 108\cdot 131^{2} + 98\cdot 131^{3} + 36\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 105 + 98\cdot 131 + 22\cdot 131^{2} + 32\cdot 131^{3} + 94\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 115 + 129\cdot 131 + 35\cdot 131^{2} + 55\cdot 131^{3} + 69\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.