Properties

Label 2.5e2_331.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 331 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$8275= 5^{2} \cdot 331 $
Artin number field: Splitting field of $f= x^{8} - 20 x^{6} + 940 x^{4} - 125 x^{2} + 176400 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 8 + 14\cdot 71 + 56\cdot 71^{2} + 44\cdot 71^{3} + 16\cdot 71^{4} + 50\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 9 + 36\cdot 71 + 41\cdot 71^{2} + 40\cdot 71^{3} + 32\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 + 20\cdot 71 + 45\cdot 71^{2} + 20\cdot 71^{3} + 4\cdot 71^{4} + 36\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 32 + 70\cdot 71^{2} + 35\cdot 71^{3} + 49\cdot 71^{4} + 23\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 39 + 70\cdot 71 + 35\cdot 71^{3} + 21\cdot 71^{4} + 47\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 49 + 50\cdot 71 + 25\cdot 71^{2} + 50\cdot 71^{3} + 66\cdot 71^{4} + 34\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 62 + 34\cdot 71 + 29\cdot 71^{2} + 30\cdot 71^{3} + 70\cdot 71^{4} + 38\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 63 + 56\cdot 71 + 14\cdot 71^{2} + 26\cdot 71^{3} + 54\cdot 71^{4} + 20\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,6,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-2$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,3,2,4)(5,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.