Properties

Label 2.5e2_311.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 311 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7775= 5^{2} \cdot 311 $
Artin number field: Splitting field of $f= x^{8} + 20 x^{6} + 990 x^{4} + 16675 x^{2} + 198025 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.311.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 68\cdot 79 + 28\cdot 79^{2} + 24\cdot 79^{3} + 9\cdot 79^{4} + 39\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 47\cdot 79 + 74\cdot 79^{2} + 30\cdot 79^{3} + 27\cdot 79^{4} + 48\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 22\cdot 79 + 51\cdot 79^{2} + 61\cdot 79^{3} + 34\cdot 79^{4} + 34\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 23 + 58\cdot 79 + 75\cdot 79^{2} + 37\cdot 79^{3} + 71\cdot 79^{4} + 42\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 56 + 20\cdot 79 + 3\cdot 79^{2} + 41\cdot 79^{3} + 7\cdot 79^{4} + 36\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 65 + 56\cdot 79 + 27\cdot 79^{2} + 17\cdot 79^{3} + 44\cdot 79^{4} + 44\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 73 + 31\cdot 79 + 4\cdot 79^{2} + 48\cdot 79^{3} + 51\cdot 79^{4} + 30\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 76 + 10\cdot 79 + 50\cdot 79^{2} + 54\cdot 79^{3} + 69\cdot 79^{4} + 39\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,6)(5,8)$
$(1,2,5,3)(4,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$2$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$4$$(1,2,5,3)(4,6,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.