Properties

Label 2.5e2_311.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 5^{2} \cdot 311 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$7775= 5^{2} \cdot 311 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 6 x^{2} - 26 x - 89 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 46 + 16\cdot 79 + 27\cdot 79^{2} + 52\cdot 79^{3} + 21\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 + 38\cdot 79 + 78\cdot 79^{2} + 34\cdot 79^{3} + 56\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 63 + 27\cdot 79 + 28\cdot 79^{2} + 59\cdot 79^{3} + 65\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 69 + 74\cdot 79 + 23\cdot 79^{2} + 11\cdot 79^{3} + 14\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.