Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6\cdot 23 + 19\cdot 23^{2} + 7\cdot 23^{3} + 3\cdot 23^{4} +O\left(23^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 a + 10 + \left(20 a + 12\right)\cdot 23 + \left(2 a + 20\right)\cdot 23^{2} + \left(18 a + 13\right)\cdot 23^{3} + \left(11 a + 18\right)\cdot 23^{4} + \left(19 a + 20\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 13 a + 7 + \left(17 a + 11\right)\cdot 23 + \left(12 a + 19\right)\cdot 23^{2} + \left(6 a + 14\right)\cdot 23^{3} + \left(18 a + 22\right)\cdot 23^{4} + \left(17 a + 17\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 21 a + 14 + \left(2 a + 4\right)\cdot 23 + \left(20 a + 6\right)\cdot 23^{2} + \left(4 a + 1\right)\cdot 23^{3} + \left(11 a + 1\right)\cdot 23^{4} + \left(3 a + 2\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 10 a + 10 + \left(5 a + 10\right)\cdot 23 + \left(10 a + 4\right)\cdot 23^{2} + \left(16 a + 15\right)\cdot 23^{3} + \left(4 a + 6\right)\cdot 23^{4} + \left(5 a + 12\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 + 23 + 22\cdot 23^{2} + 15\cdot 23^{3} + 16\cdot 23^{4} + 15\cdot 23^{5} +O\left(23^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,4)(3,6,5)$ |
| $(1,3)(2,5)(4,6)$ |
| $(2,4)(3,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-2$ |
| $3$ | $2$ | $(1,3)(2,5)(4,6)$ | $0$ |
| $3$ | $2$ | $(2,4)(3,5)$ | $0$ |
| $2$ | $3$ | $(1,2,4)(3,6,5)$ | $-1$ |
| $2$ | $6$ | $(1,3,2,6,4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.