Properties

Label 2.5e2_29.8t17.1c1
Dimension 2
Group $C_4\wr C_2$
Conductor $ 5^{2} \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:$725= 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 5 x^{6} - x^{5} - 7 x^{4} + 11 x^{3} - 6 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_4\wr C_2$
Parity: Odd
Determinant: 1.5_29.4t1.4c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 571 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 62 + 16\cdot 571 + 382\cdot 571^{2} + 560\cdot 571^{3} + 5\cdot 571^{4} + 395\cdot 571^{5} + 144\cdot 571^{6} + 241\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 117 + 419\cdot 571 + 205\cdot 571^{2} + 186\cdot 571^{3} + 456\cdot 571^{4} + 240\cdot 571^{5} + 427\cdot 571^{6} + 137\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 132 + 283\cdot 571 + 393\cdot 571^{2} + 145\cdot 571^{3} + 317\cdot 571^{4} + 404\cdot 571^{5} + 146\cdot 571^{6} + 61\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 256 + 153\cdot 571 + 570\cdot 571^{2} + 485\cdot 571^{3} + 436\cdot 571^{4} + 55\cdot 571^{5} + 274\cdot 571^{6} + 567\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 316 + 417\cdot 571 + 85\cdot 571^{3} + 134\cdot 571^{4} + 515\cdot 571^{5} + 296\cdot 571^{6} + 3\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 440 + 287\cdot 571 + 177\cdot 571^{2} + 425\cdot 571^{3} + 253\cdot 571^{4} + 166\cdot 571^{5} + 424\cdot 571^{6} + 509\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 455 + 151\cdot 571 + 365\cdot 571^{2} + 384\cdot 571^{3} + 114\cdot 571^{4} + 330\cdot 571^{5} + 143\cdot 571^{6} + 433\cdot 571^{7} +O\left(571^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 510 + 554\cdot 571 + 188\cdot 571^{2} + 10\cdot 571^{3} + 565\cdot 571^{4} + 175\cdot 571^{5} + 426\cdot 571^{6} + 329\cdot 571^{7} +O\left(571^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(2,4,7,5)$
$(2,7)(4,5)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$1$$4$$(1,6,8,3)(2,4,7,5)$$-2 \zeta_{4}$
$1$$4$$(1,3,8,6)(2,5,7,4)$$2 \zeta_{4}$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(2,4,7,5)$$\zeta_{4} - 1$
$2$$4$$(2,5,7,4)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,5,7,4)(3,6)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,4,7,5)(3,6)$$\zeta_{4} + 1$
$4$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$8$$(1,7,6,5,8,2,3,4)$$0$
$4$$8$$(1,5,3,7,8,4,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.