Properties

Label 2.5e2_29.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$725= 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 4 x^{4} - 16 x^{2} + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 36\cdot 59 + 57\cdot 59^{2} + 6\cdot 59^{3} + 41\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 33\cdot 59 + 56\cdot 59^{2} + 7\cdot 59^{3} + 21\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 35\cdot 59 + 50\cdot 59^{2} + 21\cdot 59^{3} + 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 56\cdot 59 + 53\cdot 59^{2} + 4\cdot 59^{3} + 49\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 + 2\cdot 59 + 5\cdot 59^{2} + 54\cdot 59^{3} + 9\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 53 + 23\cdot 59 + 8\cdot 59^{2} + 37\cdot 59^{3} + 57\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 55 + 25\cdot 59 + 2\cdot 59^{2} + 51\cdot 59^{3} + 37\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 22\cdot 59 + 59^{2} + 52\cdot 59^{3} + 17\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,4,2,6)(3,8,5,7)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,8)(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,4,2,6)(3,8,5,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.