Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 11 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 1 + 5\cdot 11 + 2\cdot 11^{2} + 6\cdot 11^{3} + 3\cdot 11^{4} + 7\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 + 5\cdot 11 + 4\cdot 11^{2} + 5\cdot 11^{3} + 10\cdot 11^{4} + 4\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 + 2\cdot 11 + 8\cdot 11^{2} + 11^{3} + 2\cdot 11^{4} + 8\cdot 11^{5} +O\left(11^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 10 + 8\cdot 11 + 6\cdot 11^{2} + 8\cdot 11^{3} + 5\cdot 11^{4} + 11^{5} +O\left(11^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,3)(2,4)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,3)$ | $0$ |
| $2$ | $4$ | $(1,4,3,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.