Properties

Label 2.5e2_239.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 239 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$5975= 5^{2} \cdot 239 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - x^{6} - 12 x^{5} - 59 x^{4} - 60 x^{3} - 60 x^{2} - 30 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 31 + 273\cdot 311 + 98\cdot 311^{2} + 6\cdot 311^{3} + 134\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 + 86\cdot 311 + 144\cdot 311^{2} + 42\cdot 311^{3} + 186\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 180 + 92\cdot 311 + 9\cdot 311^{2} + 218\cdot 311^{3} + 208\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 211 + 286\cdot 311 + 240\cdot 311^{2} + 287\cdot 311^{3} + 248\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 238 + 224\cdot 311 + 252\cdot 311^{2} + 82\cdot 311^{3} + 309\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 255 + 108\cdot 311 + 7\cdot 311^{2} + 12\cdot 311^{3} + 75\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 266 + 243\cdot 311 + 128\cdot 311^{2} + 246\cdot 311^{3} + 36\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 309 + 238\cdot 311 + 50\cdot 311^{2} + 37\cdot 311^{3} + 45\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,4)(3,7)(5,8)$
$(1,7,6,3)(2,8,4,5)$
$(1,2,6,4)(3,8,7,5)$
$(1,5,4,7,6,8,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,4)(3,7)(5,8)$ $-2$ $-2$
$4$ $2$ $(1,4)(2,6)(5,8)$ $0$ $0$
$2$ $4$ $(1,4,6,2)(3,5,7,8)$ $0$ $0$
$4$ $4$ $(1,3,6,7)(2,5,4,8)$ $0$ $0$
$2$ $8$ $(1,5,4,7,6,8,2,3)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,8,4,3,6,5,2,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.