Properties

Label 2.5e2_23.9t3.1c2
Dimension 2
Group $D_{9}$
Conductor $ 5^{2} \cdot 23 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{9}$
Conductor:$575= 5^{2} \cdot 23 $
Artin number field: Splitting field of $f= x^{9} - x^{8} - x^{7} - 6 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} - 5 x^{2} + 10 x + 5 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{9}$
Parity: Odd
Determinant: 1.23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{3} + 5 x + 57 $
Roots:
$r_{ 1 }$ $=$ $ 23 a^{2} + 10 a + 36 + \left(18 a^{2} + 41 a + 55\right)\cdot 59 + \left(58 a^{2} + 37 a + 39\right)\cdot 59^{2} + \left(6 a^{2} + 30 a + 12\right)\cdot 59^{3} + \left(57 a^{2} + 36 a + 24\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a^{2} + 56 a + 18 + \left(48 a^{2} + 19 a + 28\right)\cdot 59 + \left(6 a^{2} + 56 a + 36\right)\cdot 59^{2} + \left(34 a^{2} + 15 a + 54\right)\cdot 59^{3} + \left(11 a^{2} + 27 a + 58\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{2} + 17 a + 58 + \left(30 a^{2} + 34 a + 15\right)\cdot 59 + \left(39 a^{2} + 38 a + 36\right)\cdot 59^{2} + \left(29 a^{2} + 50 a + 9\right)\cdot 59^{3} + \left(4 a^{2} + 36 a + 6\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a^{2} + 16 + \left(31 a^{2} + 58 a + 27\right)\cdot 59 + \left(39 a^{2} + 27 a + 36\right)\cdot 59^{2} + \left(29 a^{2} + 31 a + 50\right)\cdot 59^{3} + \left(13 a^{2} + 28 a + 13\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 a^{2} + 20 a + 39 + \left(51 a^{2} + 25 a + 39\right)\cdot 59 + \left(32 a^{2} + 12 a + 44\right)\cdot 59^{2} + \left(2 a^{2} + 7 a + 47\right)\cdot 59^{3} + \left(55 a^{2} + 53 a + 26\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 34 a^{2} + 53 a + 23 + \left(17 a^{2} + 18 a + 20\right)\cdot 59 + \left(48 a^{2} + 10 a + 26\right)\cdot 59^{2} + \left(39 a^{2} + 10 a + 25\right)\cdot 59^{3} + \left(22 a^{2} + 9 a + 44\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 a^{2} + 42 a + 42 + \left(17 a^{2} + 13 a + 4\right)\cdot 59 + \left(19 a^{2} + 49 a + 19\right)\cdot 59^{2} + \left(22 a^{2} + 35 a + 15\right)\cdot 59^{3} + \left(51 a^{2} + 37 a + 34\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 30 a^{2} + 32 a + 20 + \left(10 a^{2} + 42 a + 29\right)\cdot 59 + \left(20 a^{2} + 41 a + 50\right)\cdot 59^{2} + \left(22 a^{2} + 36 a + 4\right)\cdot 59^{3} + \left(56 a^{2} + 44 a + 2\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 9 }$ $=$ $ 58 a^{2} + 6 a + 44 + \left(9 a^{2} + 41 a + 14\right)\cdot 59 + \left(30 a^{2} + 20 a + 5\right)\cdot 59^{2} + \left(48 a^{2} + 17 a + 15\right)\cdot 59^{3} + \left(22 a^{2} + 21 a + 25\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,5,6,8,7,4,3,2,9)$
$(1,8,3)(2,5,7)(4,9,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$9$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$3$$(1,8,3)(2,5,7)(4,9,6)$$-1$
$2$$9$$(1,5,6,8,7,4,3,2,9)$$\zeta_{9}^{5} + \zeta_{9}^{4}$
$2$$9$$(1,6,7,3,9,5,8,4,2)$$-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}$
$2$$9$$(1,7,9,8,2,6,3,5,4)$$-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}$
The blue line marks the conjugacy class containing complex conjugation.