Properties

Label 2.5e2_211.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 211 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$5275= 5^{2} \cdot 211 $
Artin number field: Splitting field of $f= x^{8} + 59 x^{6} + 1376 x^{4} + 7139 x^{2} + 14641 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 10 + 12\cdot 139 + 33\cdot 139^{2} + 78\cdot 139^{3} + 24\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 107\cdot 139 + 127\cdot 139^{2} + 112\cdot 139^{3} + 44\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 91\cdot 139 + 12\cdot 139^{2} + 31\cdot 139^{3} + 6\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 18\cdot 139 + 49\cdot 139^{2} + 64\cdot 139^{3} + 33\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 98 + 120\cdot 139 + 89\cdot 139^{2} + 74\cdot 139^{3} + 105\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 115 + 47\cdot 139 + 126\cdot 139^{2} + 107\cdot 139^{3} + 132\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 124 + 31\cdot 139 + 11\cdot 139^{2} + 26\cdot 139^{3} + 94\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 129 + 126\cdot 139 + 105\cdot 139^{2} + 60\cdot 139^{3} + 114\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3,7,5)(2,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,7,5)(2,4,8,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.