Properties

Label 2.5e2_199.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 199 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4975= 5^{2} \cdot 199 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 3 x^{6} - 20 x^{5} + x^{4} + 20 x^{3} + 132 x^{2} - 262 x + 121 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.199.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 251 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 52 + 146\cdot 251 + 94\cdot 251^{2} + 57\cdot 251^{3} + 99\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 78 + 46\cdot 251 + 156\cdot 251^{2} + 142\cdot 251^{3} + 247\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 88 + 155\cdot 251 + 204\cdot 251^{2} + 13\cdot 251^{3} + 42\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 + 99\cdot 251 + 163\cdot 251^{2} + 160\cdot 251^{3} + 36\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 104 + 228\cdot 251 + 117\cdot 251^{2} + 74\cdot 251^{3} + 120\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 135 + 6\cdot 251 + 88\cdot 251^{2} + 177\cdot 251^{3} + 79\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 212 + 100\cdot 251 + 130\cdot 251^{2} + 59\cdot 251^{3} + 43\cdot 251^{4} +O\left(251^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 241 + 220\cdot 251 + 48\cdot 251^{2} + 67\cdot 251^{3} + 84\cdot 251^{4} +O\left(251^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,7,6,8,5,4)$
$(1,2,6,5)(3,7,8,4)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,5)(2,6)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$4$$2$$(1,5)(2,6)(4,7)$$0$
$2$$4$$(1,2,6,5)(3,7,8,4)$$0$
$4$$4$$(1,3,6,8)(2,4,5,7)$$0$
$2$$8$$(1,3,2,7,6,8,5,4)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,8,2,4,6,3,5,7)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.