Properties

Label 2.5e2_191.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 191 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4775= 5^{2} \cdot 191 $
Artin number field: Splitting field of $f= x^{8} + 49 x^{6} + 1081 x^{4} + 5929 x^{2} + 14641 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.191.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 27\cdot 59 + 17\cdot 59^{2} + 23\cdot 59^{3} + 17\cdot 59^{4} + 18\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 22\cdot 59 + 20\cdot 59^{2} + 38\cdot 59^{3} + 21\cdot 59^{4} + 15\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 22 + 3\cdot 59 + 30\cdot 59^{2} + 19\cdot 59^{3} + 26\cdot 59^{4} + 5\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 29 + 17\cdot 59 + 57\cdot 59^{2} + 4\cdot 59^{3} + 38\cdot 59^{4} + 34\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 30 + 41\cdot 59 + 59^{2} + 54\cdot 59^{3} + 20\cdot 59^{4} + 24\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 37 + 55\cdot 59 + 28\cdot 59^{2} + 39\cdot 59^{3} + 32\cdot 59^{4} + 53\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 47 + 36\cdot 59 + 38\cdot 59^{2} + 20\cdot 59^{3} + 37\cdot 59^{4} + 43\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 55 + 31\cdot 59 + 41\cdot 59^{2} + 35\cdot 59^{3} + 41\cdot 59^{4} + 40\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$4$$(1,5,2,6)(3,8,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.