Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 199 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 86\cdot 199 + 183\cdot 199^{2} + 102\cdot 199^{3} + 51\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 30 + 64\cdot 199 + 101\cdot 199^{2} + 44\cdot 199^{3} + 158\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 42 + 179\cdot 199 + 134\cdot 199^{2} + 41\cdot 199^{3} + 53\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 83 + 38\cdot 199 + 130\cdot 199^{2} + 97\cdot 199^{3} + 9\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 149 + 176\cdot 199 + 136\cdot 199^{2} + 11\cdot 199^{3} + 129\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 156 + 18\cdot 199 + 141\cdot 199^{2} + 103\cdot 199^{3} + 124\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 164 + 96\cdot 199 + 146\cdot 199^{2} + 185\cdot 199^{3} + 8\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 171 + 135\cdot 199 + 20\cdot 199^{2} + 9\cdot 199^{3} + 62\cdot 199^{4} +O\left(199^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(2,3)(4,5)(6,8)$ |
| $(1,5,7,4)(2,6,3,8)$ |
| $(2,8)(3,6)(4,5)$ |
| $(1,2,7,3)(4,6,5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,7)(2,3)(4,5)(6,8)$ |
$-2$ |
$-2$ |
| $4$ |
$2$ |
$(2,8)(3,6)(4,5)$ |
$0$ |
$0$ |
| $2$ |
$4$ |
$(1,5,7,4)(2,6,3,8)$ |
$0$ |
$0$ |
| $4$ |
$4$ |
$(1,2,7,3)(4,6,5,8)$ |
$0$ |
$0$ |
| $2$ |
$8$ |
$(1,8,5,2,7,6,4,3)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $2$ |
$8$ |
$(1,6,5,3,7,8,4,2)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.