Properties

Label 2.5e2_19.4t3.3
Dimension 2
Group $D_4$
Conductor $ 5^{2} \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$475= 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 6 x^{6} - x^{5} + 6 x^{4} + 35 x^{3} - 15 x^{2} + 20 x + 80 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 1 + 72\cdot 131 + 101\cdot 131^{2} + 84\cdot 131^{3} + 96\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 78\cdot 131 + 113\cdot 131^{2} + 61\cdot 131^{3} + 2\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 + 7\cdot 131 + 31\cdot 131^{2} + 45\cdot 131^{3} + 54\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 33\cdot 131 + 91\cdot 131^{2} + 22\cdot 131^{3} + 85\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 83 + 34\cdot 131 + 77\cdot 131^{2} + 10\cdot 131^{3} + 50\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 92 + 72\cdot 131 + 81\cdot 131^{2} + 61\cdot 131^{3} + 38\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 94 + 68\cdot 131 + 70\cdot 131^{2} + 123\cdot 131^{3} + 35\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 98 + 25\cdot 131 + 88\cdot 131^{2} + 113\cdot 131^{3} + 29\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,6)(5,7)$
$(1,3,6,7)(2,5,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,4)(3,7)(5,8)$ $-2$
$2$ $2$ $(1,2)(3,8)(4,6)(5,7)$ $0$
$2$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $0$
$2$ $4$ $(1,3,6,7)(2,5,4,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.