Properties

Label 2.5e2_19.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 5^{2} \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$475= 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + x^{2} - 6 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 131 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 59 + 98\cdot 131 + 38\cdot 131^{2} + 44\cdot 131^{3} + 68\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 84 + 106\cdot 131 + 47\cdot 131^{2} + 95\cdot 131^{3} + 15\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 123 + 15\cdot 131 + 53\cdot 131^{2} + 54\cdot 131^{3} + 38\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 128 + 40\cdot 131 + 122\cdot 131^{2} + 67\cdot 131^{3} + 8\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.