Properties

Label 2.5e2_181.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 181 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4525= 5^{2} \cdot 181 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} - 11 x^{6} + 38 x^{5} + 11 x^{4} - 115 x^{3} + 95 x^{2} - 10 x - 5 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 37\cdot 139 + 53\cdot 139^{2} + 121\cdot 139^{3} + 92\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 128\cdot 139 + 70\cdot 139^{2} + 29\cdot 139^{3} + 21\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 129\cdot 139 + 35\cdot 139^{2} + 90\cdot 139^{3} + 121\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 + 79\cdot 139 + 132\cdot 139^{2} + 22\cdot 139^{3} + 39\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 + 61\cdot 139 + 4\cdot 139^{2} + 19\cdot 139^{3} + 135\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 105 + 28\cdot 139 + 112\cdot 139^{2} + 94\cdot 139^{3} + 61\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 110 + 18\cdot 139 + 131\cdot 139^{2} + 33\cdot 139^{3} + 128\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 122 + 72\cdot 139 + 15\cdot 139^{2} + 5\cdot 139^{3} + 95\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5)(2,6,7,8)$
$(1,2)(4,7)(6,8)$
$(1,4)(2,7)(3,5)(6,8)$
$(1,7,4,2)(3,6,5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $-2$ $-2$
$4$ $2$ $(1,2)(4,7)(6,8)$ $0$ $0$
$2$ $4$ $(1,7,4,2)(3,6,5,8)$ $0$ $0$
$4$ $4$ $(1,3,4,5)(2,6,7,8)$ $0$ $0$
$2$ $8$ $(1,3,7,6,4,5,2,8)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,5,7,8,4,3,2,6)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.