Properties

Label 2.5e2_17e2_19.8t8.1c1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 17^{2} \cdot 19 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$137275= 5^{2} \cdot 17^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 24 x^{6} + 43 x^{5} - 879 x^{4} + 4655 x^{3} - 27395 x^{2} + 50560 x - 166745 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd
Determinant: 1.19.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 349 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 218\cdot 349 + 198\cdot 349^{2} + 31\cdot 349^{3} + 93\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 93 + 113\cdot 349 + 87\cdot 349^{2} + 36\cdot 349^{3} + 177\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 132 + 251\cdot 349 + 97\cdot 349^{2} + 177\cdot 349^{3} + 121\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 171 + 260\cdot 349 + 315\cdot 349^{2} + 283\cdot 349^{3} + 3\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 185 + 148\cdot 349 + 183\cdot 349^{2} + 130\cdot 349^{3} + 193\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 192 + 290\cdot 349 + 227\cdot 349^{2} + 249\cdot 349^{3} + 318\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 267 + 211\cdot 349 + 192\cdot 349^{2} + 193\cdot 349^{3} + 29\cdot 349^{4} +O\left(349^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 334 + 250\cdot 349 + 92\cdot 349^{2} + 293\cdot 349^{3} + 109\cdot 349^{4} +O\left(349^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,7)(3,5)(6,8)$
$(1,2,4,7)(3,8,6,5)$
$(1,4)(2,7)(3,6)(5,8)$
$(1,6,7,8,4,3,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,7)(3,6)(5,8)$$-2$
$4$$2$$(2,7)(3,5)(6,8)$$0$
$2$$4$$(1,7,4,2)(3,5,6,8)$$0$
$4$$4$$(1,8,4,5)(2,3,7,6)$$0$
$2$$8$$(1,6,7,8,4,3,2,5)$$-\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,3,7,5,4,6,2,8)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.