Properties

Label 2.5e2_179.8t8.1
Dimension 2
Group $QD_{16}$
Conductor $ 5^{2} \cdot 179 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$QD_{16}$
Conductor:$4475= 5^{2} \cdot 179 $
Artin number field: Splitting field of $f= x^{8} + 4 x^{6} - 25 x^{5} + 16 x^{4} - 55 x^{3} + 179 x^{2} - 80 x - 29 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $QD_{16}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 29 + 44\cdot 139 + 139^{2} + 120\cdot 139^{3} + 56\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 83\cdot 139 + 12\cdot 139^{2} + 127\cdot 139^{3} + 127\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 58\cdot 139 + 86\cdot 139^{2} + 2\cdot 139^{3} + 113\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 75\cdot 139 + 5\cdot 139^{2} + 60\cdot 139^{3} + 122\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 116 + 75\cdot 139 + 46\cdot 139^{2} + 49\cdot 139^{3} + 133\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 124 + 103\cdot 139 + 38\cdot 139^{2} + 111\cdot 139^{3} + 102\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 133 + 44\cdot 139 + 82\cdot 139^{2} + 15\cdot 139^{3} + 32\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 136 + 69\cdot 139 + 4\cdot 139^{2} + 70\cdot 139^{3} + 6\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(3,8)(5,7)$
$(1,7,6,8)(2,5,4,3)$
$(1,2,6,4)(3,8,5,7)$
$(1,6)(2,4)(3,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,6)(2,4)(3,5)(7,8)$ $-2$ $-2$
$4$ $2$ $(2,4)(3,8)(5,7)$ $0$ $0$
$2$ $4$ $(1,2,6,4)(3,8,5,7)$ $0$ $0$
$4$ $4$ $(1,7,6,8)(2,5,4,3)$ $0$ $0$
$2$ $8$ $(1,5,2,7,6,3,4,8)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$2$ $8$ $(1,3,2,8,6,5,4,7)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.