Properties

Label 2.5e2_163.8t12.1
Dimension 2
Group $\SL(2,3)$
Conductor $ 5^{2} \cdot 163 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\SL(2,3)$
Conductor:$4075= 5^{2} \cdot 163 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 15 x^{6} - 22 x^{5} + 68 x^{4} - 37 x^{3} + 188 x^{2} - 269 x + 599 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\SL(2,3)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 28 a^{2} + 29 a + 26 + \left(4 a^{2} + 2 a + 35\right)\cdot 47 + \left(23 a^{2} + 30 a + 11\right)\cdot 47^{2} + \left(30 a^{2} + 37 a + 35\right)\cdot 47^{3} + \left(3 a^{2} + 20 a + 7\right)\cdot 47^{4} + \left(45 a^{2} + 30 a + 8\right)\cdot 47^{5} + \left(24 a^{2} + 33 a + 20\right)\cdot 47^{6} + \left(23 a^{2} + 9 a + 4\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 40 + 6\cdot 47 + 34\cdot 47^{2} + 15\cdot 47^{3} + 16\cdot 47^{4} + 25\cdot 47^{5} + 43\cdot 47^{6} + 12\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 10 a^{2} + 37 a + 28 + \left(26 a^{2} + 4 a + 21\right)\cdot 47 + \left(3 a^{2} + 40 a + 33\right)\cdot 47^{2} + \left(27 a^{2} + 40 a + 12\right)\cdot 47^{3} + \left(41 a^{2} + 33 a + 32\right)\cdot 47^{4} + \left(37 a^{2} + 42 a + 6\right)\cdot 47^{5} + \left(3 a^{2} + 34 a + 25\right)\cdot 47^{6} + \left(6 a^{2} + 43 a + 7\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 43 a^{2} + 12 a + 9 + \left(9 a^{2} + 19 a + 46\right)\cdot 47 + \left(42 a^{2} + 3 a + 2\right)\cdot 47^{2} + \left(23 a^{2} + 33 a + 22\right)\cdot 47^{3} + \left(18 a^{2} + 10 a + 37\right)\cdot 47^{4} + \left(18 a^{2} + 41 a + 1\right)\cdot 47^{5} + \left(35 a^{2} + 33 a + 41\right)\cdot 47^{6} + \left(12 a^{2} + 25 a + 29\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 28 + 6\cdot 47 + 37\cdot 47^{2} + 44\cdot 47^{3} + 40\cdot 47^{4} + 4\cdot 47^{5} + 40\cdot 47^{6} + 34\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 23 a^{2} + 6 a + 16 + \left(32 a^{2} + 25 a + 44\right)\cdot 47 + \left(28 a^{2} + 13 a + 22\right)\cdot 47^{2} + \left(39 a^{2} + 23 a + 6\right)\cdot 47^{3} + \left(24 a^{2} + 15 a + 3\right)\cdot 47^{4} + \left(30 a^{2} + 22 a + 26\right)\cdot 47^{5} + \left(33 a^{2} + 26 a + 37\right)\cdot 47^{6} + \left(10 a^{2} + 11 a + 25\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 15 a^{2} + 27 a + 38 + \left(42 a^{2} + 5 a + 6\right)\cdot 47 + \left(35 a^{2} + 16 a + 4\right)\cdot 47^{2} + \left(45 a^{2} + 46 a + 3\right)\cdot 47^{3} + \left(30 a^{2} + 46 a + 11\right)\cdot 47^{4} + \left(7 a^{2} + 13 a + 40\right)\cdot 47^{5} + \left(8 a^{2} + 19 a + 33\right)\cdot 47^{6} + \left(30 a^{2} + 28 a + 8\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 22 a^{2} + 30 a + 5 + \left(25 a^{2} + 36 a + 20\right)\cdot 47 + \left(7 a^{2} + 37 a + 41\right)\cdot 47^{2} + \left(21 a^{2} + 6 a\right)\cdot 47^{3} + \left(21 a^{2} + 13 a + 39\right)\cdot 47^{4} + \left(a^{2} + 37 a + 27\right)\cdot 47^{5} + \left(35 a^{2} + 39 a + 40\right)\cdot 47^{6} + \left(10 a^{2} + 21 a + 16\right)\cdot 47^{7} +O\left(47^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,7,6)(4,8,5)$
$(1,6,3,8)(2,4,5,7)$
$(1,4,3,7)(2,8,5,6)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $-2$ $-2$
$4$ $3$ $(2,7,6)(4,8,5)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$4$ $3$ $(2,6,7)(4,5,8)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$6$ $4$ $(1,4,3,7)(2,8,5,6)$ $0$ $0$
$4$ $6$ $(1,4,5,3,7,2)(6,8)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$4$ $6$ $(1,2,7,3,5,4)(6,8)$ $-\zeta_{3} - 1$ $\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.